

























HK Summit – Global Printing Standardisation and ICC Color Symposium com CTV Certificate Presentation/Ceremo

# **CHARACTERIZING BACKLIT MEDIA:** AN HDR (POTENTIAL?) PRINT **APPLICATION**

Mission: Printing the Expected Backlit



Highlights

For later reading

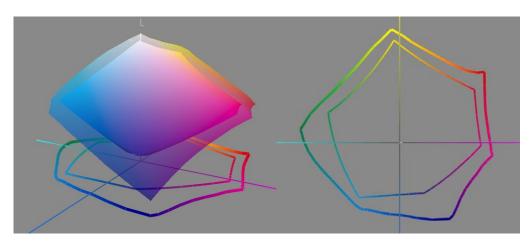
### UNDERSTANDING "BACKLIT" AND PROFILING PRINTING CONDITIONS FOR BACKLIT APPLICATIONS

- 1. Concept of Backlit Print Applications
  - ⇒ Which printing systems, inks and substrates, "backlit" capable printing modes
- ⇒ 2. "Backlit" metrology
- 3. Light and lightbox construction influence
- → 4. Research topics:
  - Concept for standardization (ISO 3664 and ISO 13655) by providing tools and guidelines for measuring, profiling and visual matching of transparent media
  - ⇒ https://fogra.org/fileadmin/files/7 downloads/forschungsberichte/fogra-forschungsbericht-FB10060L.pdf
- ⇒ 5. Printing the Expected objective: adaptability to expectations 達到預期
  - ⇒ Fogra ProcessStandard Digital PSD industrial procedure
  - → Fogra PrintCheck for Large Format Printing application
- 6. HDR for "Backlit"?








### CONSIDERATIONS ABOUT BACKLIT PRINT APPLICATIONS

### **⇔** Chromatic adaptation influencers

- → Transmissive light and ambient light SPD's
- ⇒ Different substrate properties (colour, fluorescence, gloss, light scattering and absorption of the combined reflection and transmission response)

## **⇒** Differences from typical reflective print applications

- ⇒ Higher perceived dynamic range (contrast)
- ⇒ Bigger colour gamut with strong chromatic colours



ISO\_coated\_V2 (FOGRA39) vs. Backlit Film printing condition



Source: Thomas Liesner - Vignold

### **MEASURING PROTOCOL – BASED ON ISO 13655:2017**

#### → Data

- ⇒ Spectral measurements
- ⇒ d/0 transmission geometry, preferably M1 measurements, e.g. Barbieri Spectro LFP qb, optical density up to D3.0
- ⇒ Alternatively, emission measurements, e.g. X-Rite i1Pro 3 Plus/iO3, maximum supported luminance 5000 cd/m²

### Specific consideration

- ➡ Measurements are taken media relative device is calibrated on the substrate white resulting in a relative white point with the CIELAB value of 100/0/0
- ⇒ Large apertures, 6 or 8 mm for Barbieri SpectroLFP qb, 8 mm for X-Rite i1Pro 3 Plus/iO3



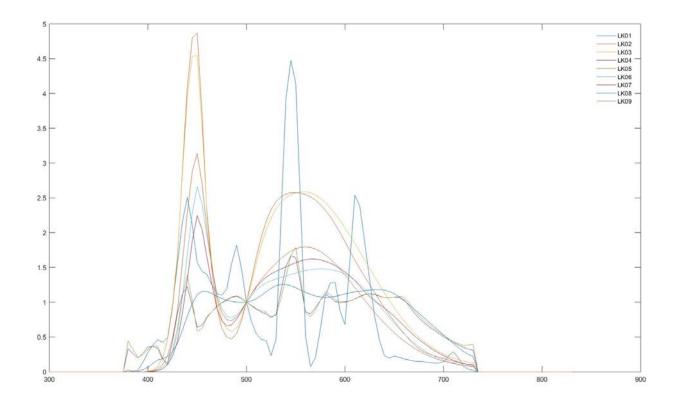



### **CONSIDERATIONS ABOUT SUBSTRATES**

- → Thin flexible or rigid up to 1 mm
- ⇒ Thick 1 3 mm, 3 5 mm increased measurement uncertainty due to:
  - ⇒ Stray light coming from outside
  - ⇒ Substrate internal reflection
- Depending on the substrate opacity, recommended thickness is less then 3 mm and is preferably less then 1 mm
- Translucent or transparent Self-adhesive substrates (e.g. SAV - Self-adhesive Vinyl) meant for transmissive application need to be removed from the liner and transferred to a thin transparent clear foil (100 μm – 500 μm)

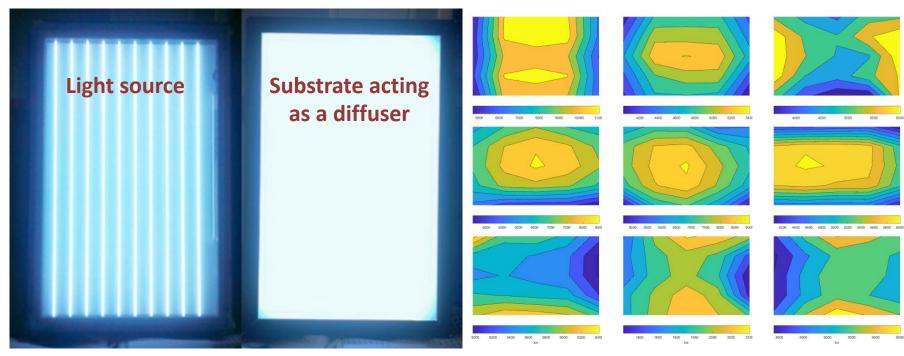


Transmission Sample Holder




### LIGHT SPD FOR VARIOUS LIGHTBOXES

# **⇒** Different types and with different SPD provide the backlight using various lighting technologies


- ⇒ Fluorescent tubes (LK1 and LK5)
- ⇒ Edge lit (side) LED (LK3, LK7 w/ diffuser, LK8 w/ diffuser and LK9)
- ⇒ Backlit LED (LK2, LK4 and LK6)

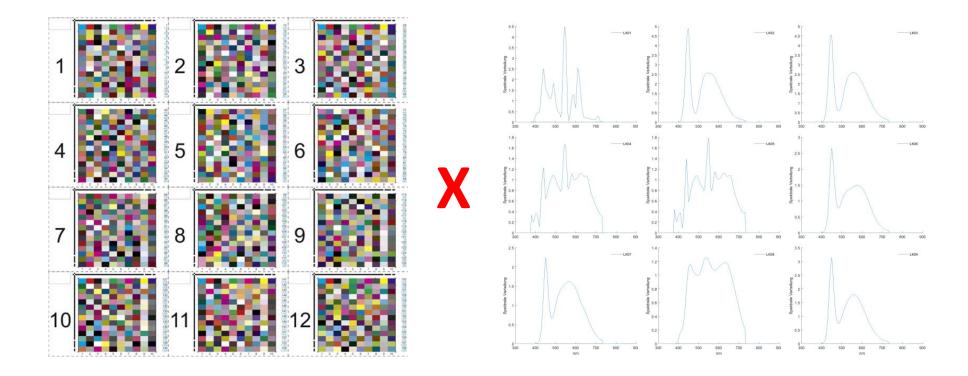




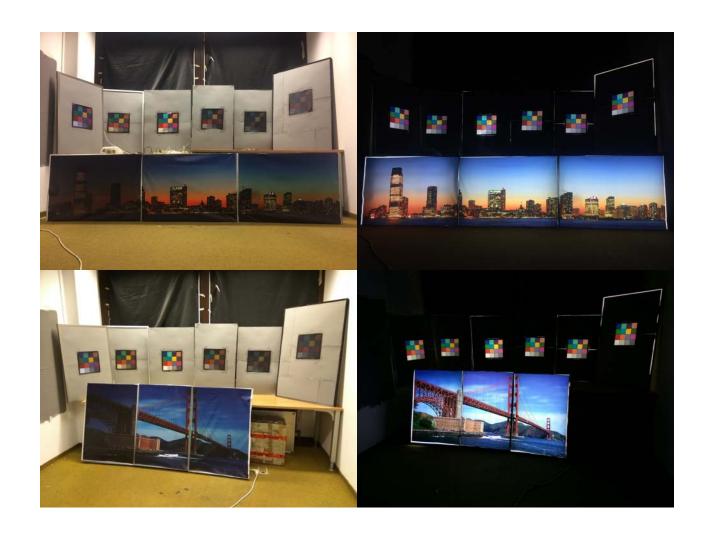
### CHROMATIC ADAPTATION TO THE LIGHT BOX

- Relative substrate measurement count toward "Measure as we see"
- ⇒ Light in the box count toward what we see



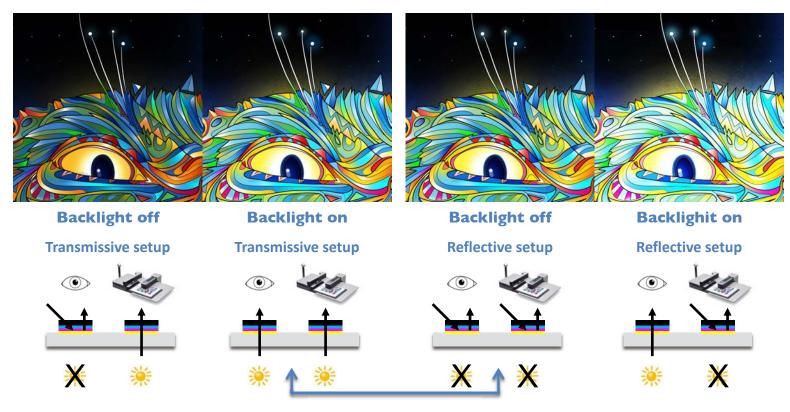

Lightbox without Substrate

Lightbox with Substrate


LK1..LK9 luminance variation relative to each lightbox min and max lux determination

### **COLOUR MANAGEMENT METHOD**

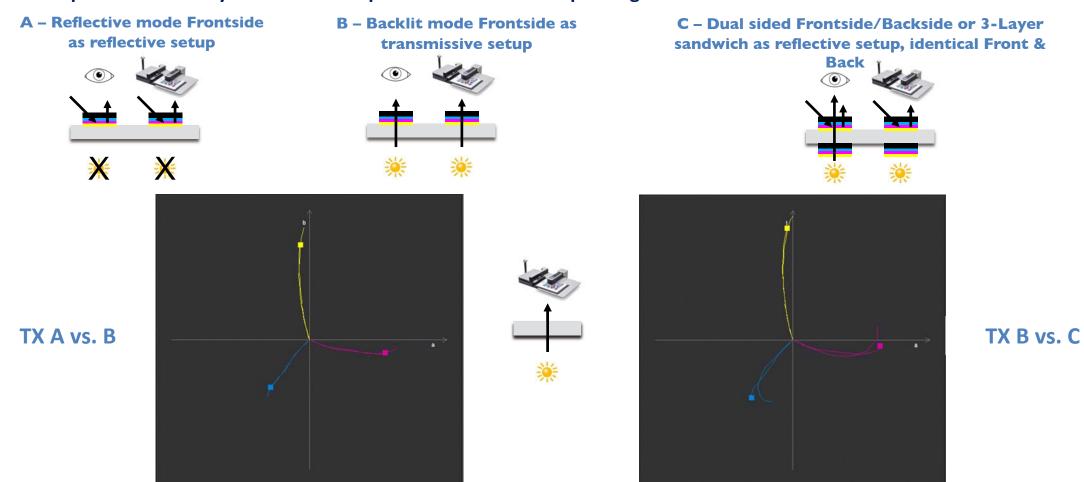
The combination of CMYK driving values with the spectral stimuli hitting the human eye is based on the additive model with the two sets being multiplied together wavelength by wavelength resulting the combined colour spectrum of the characterization data set




# VISUAL: BACKLIGHT OFF/LIGHT ON VS. BACKLIGHT ON/LIGHT OFF



# DAY – NIGHT PRINTING APPLICATIONS (BACKLIGHT OFF/ON)


### → The challenge:



Backlight on/off – One setup to fulfill "Measure as we see"?


### **COLORANT RESPONSE IN TRANSMISSION**

Comparison and analysis of three setups related to the same printing combination



#### **COLOUR MANAGEMENT METHOD**

**⇒** Calculate the Backside to add to Frontside (A) to match Backlit (B) mode for Dual side setup:





The Medical Royal

Collection Toget

Rather Spector LEP

Collection Toget

Collectio

\*\* (Mission bin)\*

MEDIA
Collection Target
Collect TealColler

Collect TealColler

Collect Collect Collect

Collect Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

Collect Collect

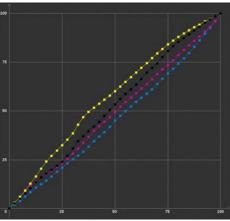
Collect Collect

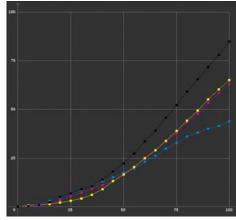
Collect Collect

Collect Collect

Collect Collect

Collect Collect


Collect C


Case B (Frontside Backlit mode) transmittance aim



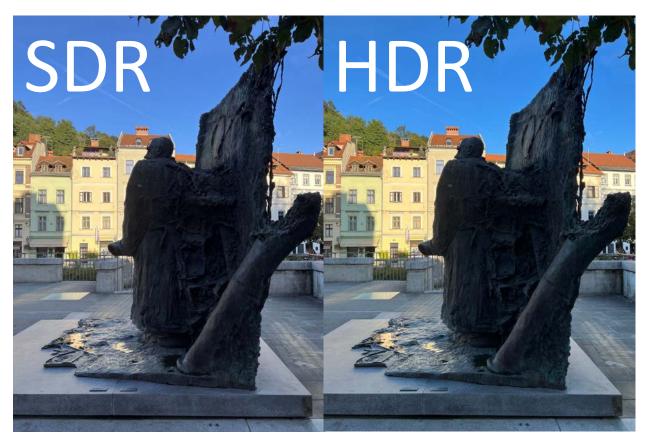
Needed (Backside) in transmittance



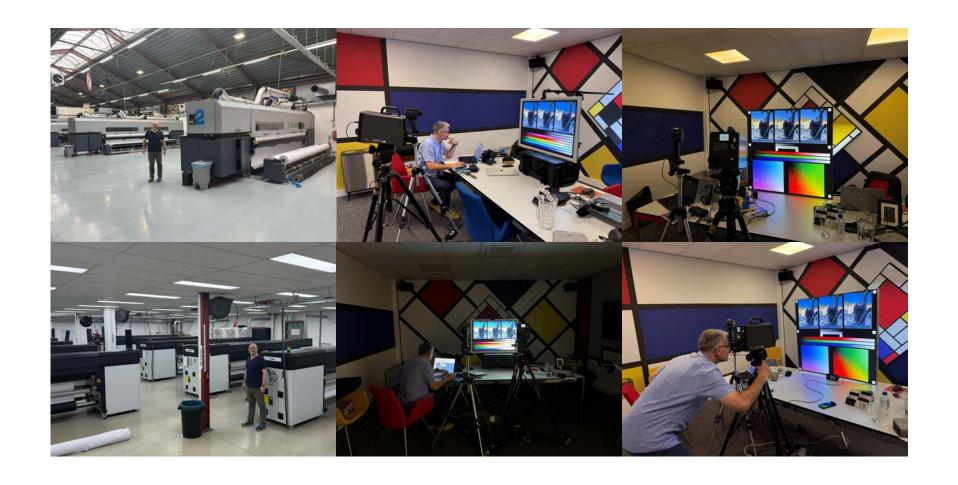




Comparison of media-relative transmittance characterization data sets between single side Backlit with Dual Side/Sandwich – Avg. 1,5  $\Delta E^*_{00}$  /95% 2,4  $\Delta E^*_{00}$  /Max. 5,4  $\Delta E^*_{00}$ 


#### IS BACKLIT PRINTING A POTENTIAL HDR APPLICATION?

#### ⇒ HDR is ...


- ⇒ ... all about contrast,
- → ... requires specific capable hardware for input (camera) and display (monitor)
- ⇒ ... additional software features are necessary to handle the HDR content,
- → ... it is possible to replicate the effect for backlit printing applications?

### **⇒** Some background

- ⇒ Discussions inside DPWG
- → A bit of research together with Prof. Florian Süßl from Berliner Hochschule für Technik (BHT)
- ⇒ 3 days on-site at Van Straaten in The Netherlands
- ⇒ 2 backlit printing combination and 2 light boxes



## **BACKLIT PRINTING: PROCESS AND EVALUATION**



### PARAMETERS AND TOOLS TO EVALUATE THE DYNAMIC RANGE


⇒ Luminance Lv [cd/m2 or nits] – "how bright an object appears to the eye"

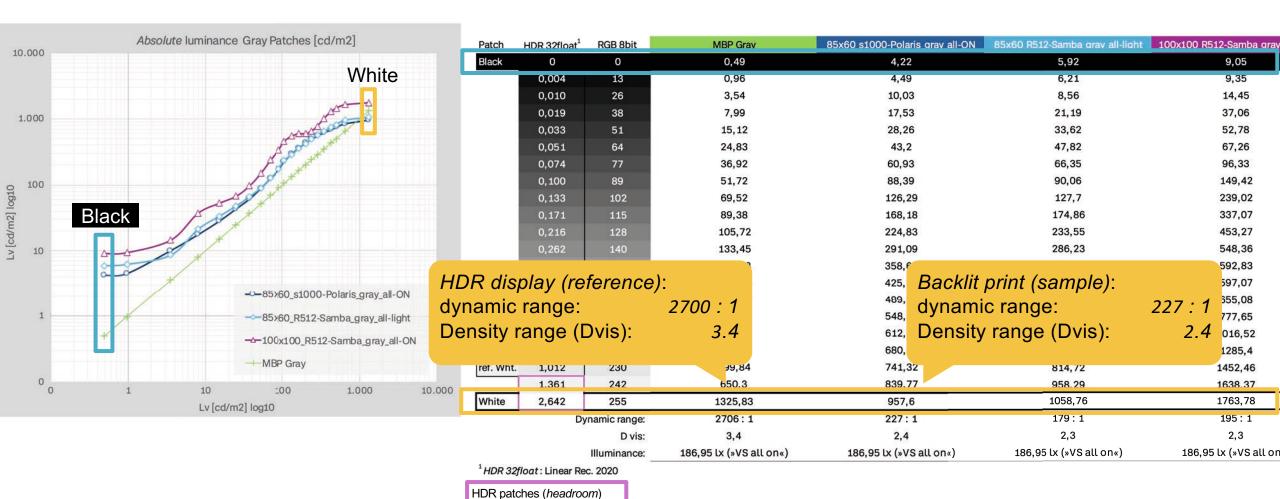
$$\Rightarrow DynamicRange = \frac{Lv_{max}[cd/m^2]}{Lv_{min}[cd/m^2]}$$

- **→** How to measure luminance "measure what you see"?
  - ⇒ Luminance Meter (Konica Minolta LS-160)



⇒ Spectroradiometer (Konica Minolta CS-2000)








# **LUMINANCE AND ILLUMINANCE – HDR-DISPLAY (REFERENCE) VS. BACKLIT PRINT (SAMPLE)**



### **LUMINANCE OF BACKLIT PRINT VS. HDR DISPLAY (REF.)**



### **HDR BACKLIT PRINT – FINDINGS**

- **⇒ White point** 
  - ⇒ Luminance of light box and substrate matches the HDR display peak luminance
- ⇒ **X** Black point
  - ⇒ The typically achieved black point D2.4 is not yet dark enough
  - ⇒ At least D3.0 is required, but both tested printing combinations were at the highest achievable values
- ⇒ X Tone mapping and tone reproduction
  - ⇒ Deviating contrast/ gradation
  - ➡ Missing headroom and shadow details

#### **HDR BACKLIT PRINT – NEXT STEPS**

- **⇒** Improve Black point for an increase dynamic range of at least 1000:1
  - ⇒ Backlit only application: find higher >D3.0 density able K ink that can be used for the project printing combinations
  - ⇒ For dual side and sandwich, alternative ways to increase the overall optical density

#### Measurements

- ⇒ ! Evaluate consistency and stability in the D3.0 range
- Tone mapping and tone reproduction
  - ⇒ Better match with the tone reproduction of HDR on display
  - ⇒ ! Adopt and use the methods already defined for still images (gain map, adaptive gain curve, ICC cicpTag)
- **⇒** Integrate the presented color management methods
  - ⇒ Lightbox SPD
  - ⇒ Daylight illumination (Frontside/1st layer) as SDR
  - ⇒ Backlit illumination (contribution from Backside/2<sup>nd</sup> layer) as HDR

# THANK YOU FOR YOUR ATTENTION

香港國際印刷標準化論壇》
ICC色彩管理研討會

CTV頒發證書典禮

HK Summit – Global Printing Standardisation and ICC Color Symposium com
CTV Certificate Presentation Ceremony

2025-11-03

dorinp@transilvae.ro