Improving Softproofing Performance with Observerspecific Colour Matching Functions

Dr. Chris Bai
Chief Colour Expert, BenQ
Co-Chair and Displays Working Group Chair, ICC
2025/11/03

Research Background

- When BenQ 1st LED backlight colour management monitor was announced in 2013.
 - Very exciting news!
 - Experienced users found out LED backlight monitor did not performed well in softproofing scenario.

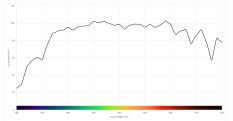
Symptoms

- Variations in blue, green and pale yellow tones, for example.
- Difference in perceived saturation.

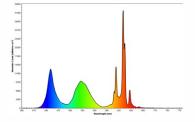
Overall saturation is different

Viewing Booth (Simulated)

LED Backlight Monitor (Simulated)


Slight hue shift in blue

Slight hue shift in areen


Slight hue shift in pale

Why?

Experiment Overview

- To conduct "visual matching" between a display and a hardcopy print.
- Adjusting the parameters on the display using designed software.

Experiment Overview

Two experiments were conducted:

- 1. CMF (Colour Matching Function) Construction Experiment:
 - to use visual matching method to determine individual CMFs,
 - calculate average CMFs, and
 - utilize K-means method to obtain 3 groups of CMFs.
- Validation Experiment:
 - to validate the best matching set of CMFs.

45 observers participated the experiment:

- 24 male and 21 female
- Age ranges from 25 to 45 years old.
- Each observers were asked to conduct 3 trials.
 - There were 45x7x3 = 945 judgements conducted in the experiment.

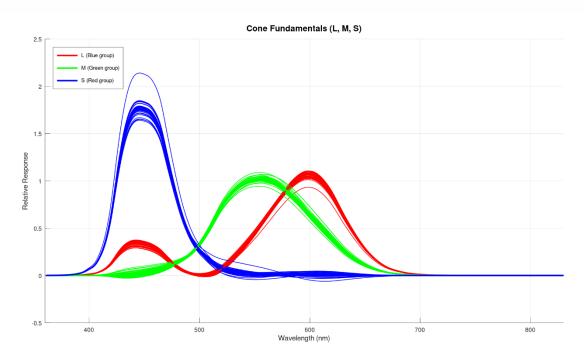
Experiment Procedure

CMF Construction Experiment:

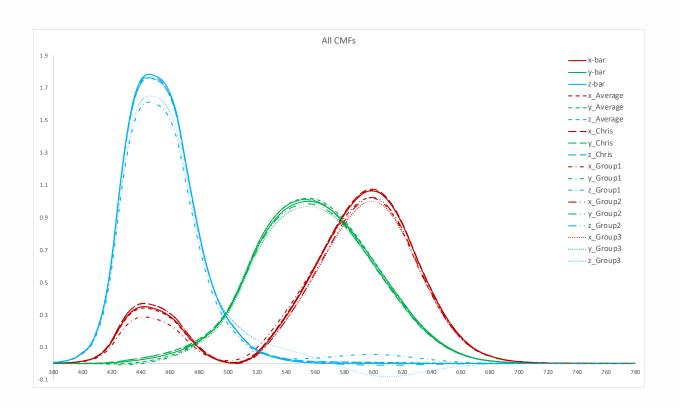
- 1. Calibrate the monitor to D50, and generate Display Profile.
- Use experiment software to adjust hue, saturation and lightness of the displayed image.
- 3. Record the HSL values of each image.
- 4. Repeat the adjustment for 3 times for each observer.

Validation Experiment:

- 1. Devise individual, average, and 3 K-means CMFs.
- 2. Ask observer to evaluate 6 sets of CMFs (including 2°) for the best match.
- 3. Calculate the ΔE values between the print and display.


CMF Construction Experiment

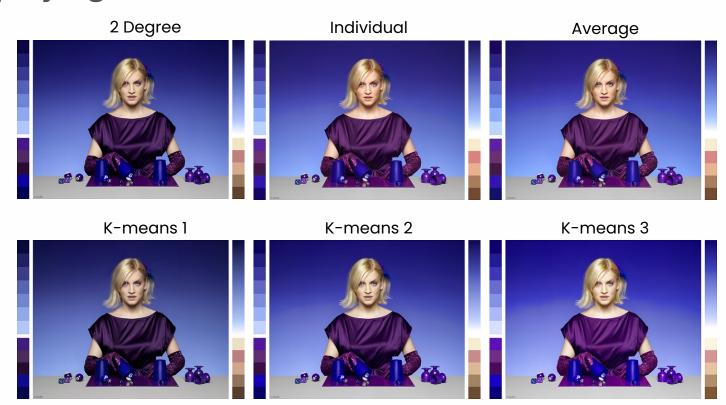
Experiment Procedure:


- 1. Calibrate the monitor to D50, and generate Display Profile.
- Use experiment software to adjust hue, saturation and lightness of the displayed image and colour patches.
- 3. Record the HSL values of each image.
- 4. Repeat the adjustment for 3 times for each observer.
- Measure the XYZ values of the colour patches for each observer.
- Construct individual CMFs using matrix transformation from 2° Standard Observer CMFs.
- Utilize 45 sets of individual CMFs to determine average CMF and 3 categories of CMFs using K-means method.

Experiment Results

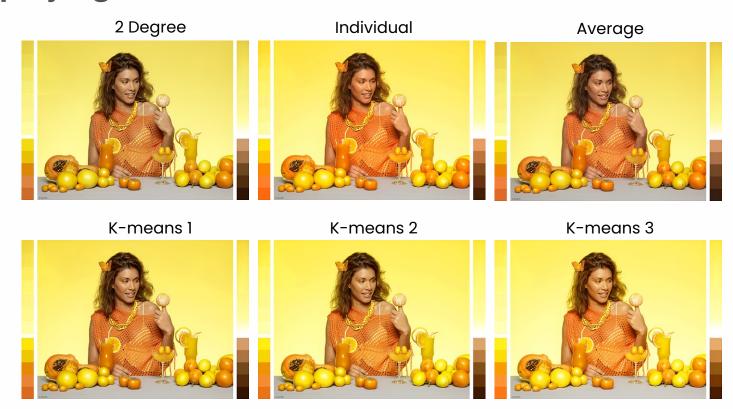
45 observers' CMFs

CMF Sets

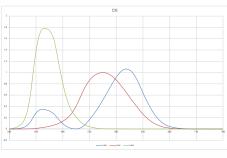

Displaying with Different CMFs - Red

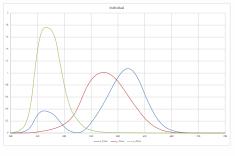
Displaying with Different CMFs - Green

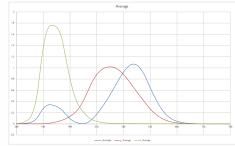
Displaying with Different CMFs - Blue

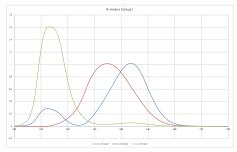

Displaying with Different CMFs - Cyan

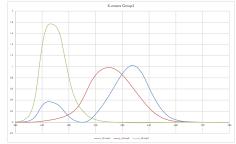
Displaying with Different CMFs - Magenta

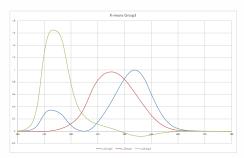


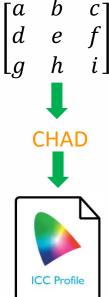

Displaying with Different CMFs – Yellow




Validation Experiment


 Need to determine which set of CMFs delivers better softproofing matching performance.





Validation Experiment

Experiment Procedure:

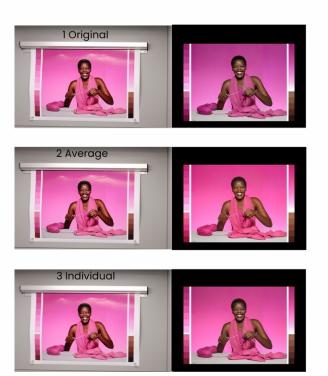
- Calculate the corresponding matrices related to 2° Standard Observer
 CMFs from:
 - Individual CMFs
 - Average CMFs
 - 3 Categories of K-means CMFs
- Generate corresponding ICC profiles using CHAD tag.
- 3. Ask observer to evaluate 6 sets of CMFs (including 2°) for the best match.
- 4. Calculate the ΔE values between the print and display.

Softproofing with Different CMFs - Red

Softproofing with Different CMFs - Green

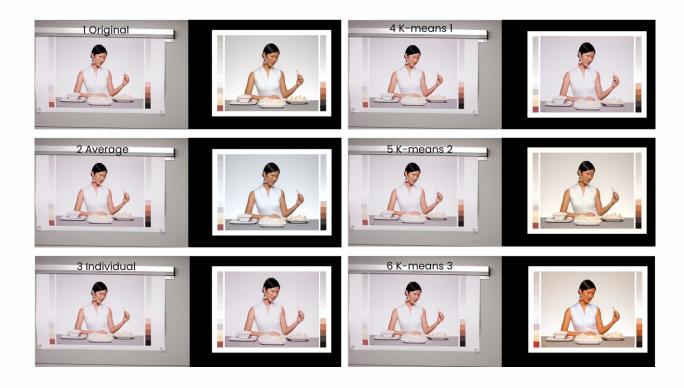
Softproofing with Different CMFs - Blue

Softproofing with Different CMFs - Cyan



Softproofing with Different CMFs - Magenta

Softproofing with Different CMFs - Yellow



Softproofing with Different CMFs - White

Preliminary Validation Result

Observer	W	R	G	В	С	М	Υ
А	3	3	3	3	3	4	1
В	4	3	4	3	3	1	1
С	4	3	4	3	3	4	1
D	3	3	4	3	4	1	1
E	3	3	4	5	4	4	1

1. Original 2. Average CMFs	3. Individual CMFs	4. K-means Cluster 1	5. K-means Cluster 2	6. K-means Cluster 3
-----------------------------	--------------------	----------------------	----------------------	----------------------

Α	verage	0.99735	0.01117	-0.0047
1		-0.00895	1.02252	-0.00596
L		0.00429	0.00324	0.98685

Individual	1.0064	0.0059	0.00937
	-0.03893	1.0297	0.01305
	-0.0068	0.00901	0.98823

K-means	0.92439	0.05876	-0.02164
1	-0.03143	1.02909	-0.00851
	0.05247	-0.002	0.89287

K-means	0.97016	-0.01438	0.01763
2	-0.00959	0.9896	0.00812
	-0.01495	0.0088	0.99652

K-means	0.94288	-0.00617	0.00851
3	0.0068	0.96276	-0.0116
	-0.13801	0.11356	0.95021

Numeric Validation

Utilize ISO 14861 test patches to conduct numeric softproof validation.

Use CCFL monitor as a reference baseline:

Numeric Validation

ISO 14861 Softproofing Validation Results and Criteria:

	CCFL	LED	LED with CMFs	Criteria
Mean ΔE ₀₀	2.72	3.79	3.16	≤ 4.0
Maximum ΔE ₀₀	5.81	6.81	6.46	≤ 6.5

- Comparing Hardcopy Print to Displayed Colour Patches:
 - CCFL display has the best match.
 - LED with individual CMFs can improve softproofing performance.

Conclusions

- 1. Modern wide colour gamut display can cause colour matching failure.
- 2. The degree of colour matching failure is observer specific.
- 3. Experiment results had shown using CMFs other than 2° Standard Observer CMFs can improve softproofing performance.
- 4. ΔE values also support the improvement.
- 5. Observer specific CMFs can be implemented in current ICC profile architecture.